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ABSTRACT 
 InP Bi-CMOS technology capable of wafer-scale 
device-level heterogeneous integration (HI) of InP HBTs 
and CMOS has been developed. With this technology, full 
simultaneous utilization of III-V device speed and CMOS 
circuit complexity is possible. Simple ICs and test 
structures have been fabricated, showing no significant 
CMOS or HBT degradation and high heterogeneous 
interconnect yield. The heterogeneously integrated 
differential amplifiers with record performance and 
HBTs with fT=400GHz were obtained. Thermal vias to 
the Si substrate provide sufficient heat path to lower HI 
HBT thermal resistances close to on-InP values. 
Resulting circuits maintain maximum CMOS integration 
density and HBT performance, while keeping the 
heterogeneous interconnect length below 5μm.  
 
INTRODUCTION 
 Despite much higher level of investment in CMOS, III-V 
compound semiconductor (CS) device performance still 
surpasses that of their Si counterparts. However, this 
investment has produced CMOS ICs with orders of 
magnitude higher integration level at a fraction of the cost. 
For many mixed signal applications, having circuits 
composed of both Si CMOS, which possesses low power 
dissipation and high transistor count, and compound 
semiconductor transistors with high-speed high-voltage 
swing performance would be advantageous. In general, 
heterogeneous integration (HI) of technologies from 
dissimilar materials can be done in a variety of ways. The 
heterogeneous integration method depends primarily on the 
final circuit or system. Such considerations as whether the 
different technology components are integrated as full 
circuits, circuit blocks or as individual devices, as well as the 
required heterogeneous interconnect impedance, will 
determine the required interconnect density and length. 
Systems in a package or systems on a chip consisting of 
separate circuits can be interconnected with wire bonding if 
the number of interconnections is small and the interconnect 
signal speed is not extremely high. For systems on a chip 
where interconnect number is large, such as a focal plane 
array integrated with a readout, or where wire bond 
impedance is prohibitive, bump bonding is more 
advantageous. For circuits that require device-level 
integration where a large portion of devices from one 
material are connected to a device from another material, 
heterogeneous interconnects comparable in length and 
density to standard semiconductor technology interconnects 
are required.  

 One way to achieve device-level integration is by 
performing metamorphic epitaxial growth, such as InGaAs 
on Si [1], and then processing both types of devices together. 
Another approach is to process the first device type before 
the growth and processing of the second device type. This 
can also be done after the full interconnect stack for the first 
device type is finished by etching windows in the dielectric 
before growth [2]. Instead of epitaxial growth, wafer bonding 
can be utilized for heterogeneous integration of two 
materials. The bonding can be done on unprocessed wafers, 
such as done for some SOI wafer fabrication, or with fully or 
partially processed wafers. The choice of the process is 
determined by such considerations as process compatibility 
between the two device types, required heterogeneous 
interconnect length, heat removal, reliability, and cost. A 
well designed process, thus, would produce ICs where device 
performance, reliability, size, thermal management and 
minimum interconnect length of both device types would be 
on par with non-HI technologies.  
 Device-level integration of compound semiconductor 
devices with CMOS would enable a new class of high-
performance high-functionality ICs [3, 4] at a cost similar to 
CS ICs alone. For such heterogeneous ICs, InP DHBT 
technology is particularly suited due to the high device 
performance [5], high IC speed at low power [6], and circuit 
compactness as illustrated in Figure 1. The heterogeneous 
integration approach can use the latest CMOS technology, 
where as a monolithically integrated technology, such as 
SiGe Bi-CMOS, lags in the CMOS technology node and 
incorporation of the state-of-the-art SiGe HBTs is impeded 
by small market size relative to the development cost. In this 
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Figure 1. Comparison of transistor speed, transistor count, 
power dissipation and target market of various technologies. 
HRL’s CoSMOS heterogeneous integration technology can 
combine advantages of all these technologies for many circuit 
applications. 
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work, we describe InP Bi-CMOS technology with wafer-
scale device-level heterogeneous integration of 250nm, 
300GHz fT/fMAX InP DHBTs with IBM’s 130nm RF-CMOS 
(CMRF8SF).  
 
PROCESS TECHNOLOGY 
 For this technology, InP DHBT epitaxial layers are 
bonded to the top interconnect layer of a CMOS wafer, 
which are then processed into HBTs and interconnected with 
the CMOS [7].  This process is illustrated in Figure 2 and 

images of the wafer at different stages are shown on 
Figure 3. The IBM CMOS process is terminated at the last 
planar interconnect layer with only a thin dielectric layer on 
top of the copper. All of the CMOS interconnect layers, 
except for the last one, are planarized using chemical 
mechanical polishing (CMP), so the process can be stopped 
at any of these layers. The CMP surface is planar enough for 
wafer bonding and enables high yield epitaxial transfer. The 
200mm CMOS wafers are then cut into four 3inch wafers so 
that they can be further processed in our HBT line. Standard 
DHBT epitaxial layers are grown with the emitter side up on 
an InP substrate with thin etch stop layers inserted between 
the subcollector and the InP substrate (Figure 2a). The 
DHBT wafer is then wafer bonded to a temporary Si handle 
wafer (Figure 2b). The InP growth substrate is removed by 

wet etching, stopping on the etch stop layers (Figure 2c). An 
Al heat spreader layer is then deposited on the subcollector. 
The epitaxial layers are then permanently bonded to the top 
CMOS surface using BCB adhesive layer (Figure 2d) [8]. 
The permanent bond can be a full-wafer wafer bond. 
However, die bonding was developed to allow the use of 
different size InP growth substrate and the substrate on 
which the HBT process is carried out. Thus, the HBT process 
can be carried out on the full size CMOS wafer. After the 
permanent bonding, the handle is removed, completing the 
epitaxial transfer process. The epitaxial transfer process 
consists of two bonding steps to ensure optimal epitaxial 
growth and device layout, which is with the emitter up in 
both cases.  

  

 
Figure 2. Schematic representation of heterogeneous integration 
process consisting of a) HBT epitaxial growth, b) temporary 
wafer bonding to a handle wafer, c) growth substrate removal, 
d) permanent bonding to CMOS after heat spreader deposition, 
and e) HBT fabrication and heterogeneous integration. 

After the epitaxial transfer, the InP HBT process is 
carried out. The CMOS wafer contains the alignment marks 
needed for the HBT processing. InP DHBT fabrication 
process on top of CMOS is similar to the standard process 
[9]. Alignment accuracy to the CMOS and between the HBT 
layers is limited by the stepper and is equal to our standard 
HBT process. Despite increased overall topography, critical 
dimension control for both electron beam and optical 
lithography is maintained. This alignment strategy enables 
dense and intimate device-level integration with <5μm 
heterogeneous interconnect length. After the HBT is 
fabricated, the heat spreader and the adhesion layers are 
patterned. The HBT and CMOS are finally interconnected 
through HI vias which connect the HBT interconnect metal 
to the top CMOS Cu interconnect layer (Figure 2e). In 
addition to electrical vias, thermal vias that connect the heat 
spreader of each HBT to the Si substrate are also fabricated. 
Only one post-CMOS interconnection layer is used. All other 
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Figure 3. a) A photograph of an die bonded wafer at step E 
of Figure 2, b) an SEM micrograph HI integrated HBT 
before final interconnection, and c) an SEM micrograph of 
an HBT at the end of the process. 
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Figure 5. DC characteristics of an AE=0.25x4.0μm2 InP DHBT 
bonded onto CMOS: (top) forward Gummel with DC current 
gain (βf) >30 while being driven at an IC=10mA/μm2 and a 
VCE=VBE; (bottom) common emitter IV and corresponding 
VBE with IB=0 to 200μA in 20μA steps. 

interconnect layers as well as resistors and capacitors are 
fabricated as part the CMOS interconnect process, so the 
current cost of the ICs is similar to our standard DHBT 
process. 
 
RESULTS  

To verify that the IBM CMOS devices are unaffected by 
the heterogeneous integration process, performance of the 
CMOS test devices that have gone through the IBM process 
only and ones that also went through the heterogeneous 
integration were compared. The IV characteristics of various 
IBM CMRF8SF library devices from HRL heterogeneously 
integrated wafers showed no signs of device degradation 
when compared to control IBM CMOS wafers. Figure 4 

shows the typical transfer characteristics of a 1.5V thin-
oxide, triple well NFET sampled from an HRL fabricated HI 
wafer and an IBM fabricated control CMOS wafer.  
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Figure 4. Transfer IV characteristics and associated 
transconductance, gm, from a 1.5V thin-oxide, triple-well 
NFET (LG=120nm, WG=5.0μm) bias at a VDS=1.5V and 
VBS=0.0V. A sparse sampling of 10 devices from a single 
HI wafer (top) and 22 devices from a quarter of the IBM 
control CMOS wafer (bottom) are shown. 
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Figure 6.  The fT and fMAX dependence with IC of an 
AE=0.25x4.0µm2 InP DHBT while being driven by a forced 
IB and fixed VCE=1.2V (top). Cumulative distribution of the 
for devices across a wafer (bottom) shows that high 
performance is not limited to select devices. 

The HI HBTs performance was on par with our standard 
250nm HBTs. For an AE=0.25x4μm2 InP DHBT, Figure 5 
(top) shows the forward Gummel characteristics and a DC 
current gain (βf) >30; Figure 5 (bottom) shows common 
emitter IV characteristics with low output conductance. For 
the same size device, Figure 6 shows fT and fMAX values of 
400GHz and 244GHz, respectively. Variation in fT is also 
shown, with > 90% of the device fT values > 300GHz.  
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Technology robustness was assessed by comparing 
differential amplifier performance before and after wafer 
temperature cycling in an inert gas ambient. The temperature 
was cycled from -55°C to +85°C with 10 min dwell time at 
extremes. Comparison of slew rate and DC Gain x Unity-
Gain-Bandwidth figures of merit before and after 100 
thermal cycles (not under bias) is shown on Figure 10. This 
data indicates that our process produces robust devices and 
circuits. 

Since the HBTs are located on the interconnect stack 
dielectric, a heat path is provided through a thermal via. A 
cross sectional SEM of the HBT and its thermal vias is 
shown on Figure 7. This heat path connects the HBT 

collector contact to the Si substrate through the HI metal, 
large HI via and the CMOS copper. An aluminum heat 
spreader layer underneath the sub-collector lowers the 
thermal resistance from the base-collector junction to the 
collector contact. Two types of thermal vias were made: DC 
via with continuous metal contact and AC via with a thin 
dielectric layer between the HI metal and the copper 
interconnect. AC via reduces the parasitic capacitance 
associated with the thermal via [10]. Thermal resistance 
(RTH) of the heterogeneously integrated HBTs was 
determined by measuring the VBE shift as a function of 
dissipated power at various ambient temperatures [11]. 
Thermal resistances for devices with DC via, AC via, and no 
thermal via are shown on Figure 8. Thermal resistance values 
as low as 12.0 °C/mW were obtained, which are close to 
8-10 °C/mW obtained for standard HBTs [12]. As can be 
seen when comparing to devices without the via, the thermal 
via greatly reduces HBT thermal resistance. Furthermore, 
RTH values for DC and AC thermal vias are not significantly 
different, so the AC via devices with lower parasitic 
capacitance can be used in the circuits. It should be noted 
that the device in Figure 6 has a DC thermal via, and devices 
with AC thermal via show very similar performance. 

Thermal ViaSix Cu metal layers

250 nm InP HBT

 
 
Figure 7. Cross sectional SEM showing the HBT with its 
collector connected through a thermal via to the Si substrate. 

Using the InP Bi-CMOS technology, differential 
amplifier ICs [10] and DC and RF test structures were 
fabricated. The differential amplifier shown on Figure 11 
demonstrated gain bandwidth product of 40-130 GHz, low 
frequency gain of >48dB, and a DC Gain x Unity-Gain-
Bandwidth figure of merit of 1.6x104 GHz . The use of InP 
DHBTs supports a 6.9 V differential output swing with 0.4V 
differential input. A slew rate of 4.4x104

 V/μs is achieved 
with as low as 40mW dissipated power. Presence of CMOS 
enabled the use of novel on-chip buffer circuits to facilitate 
the on-wafer characterization of these amplifiers. As can be 
seen from the amplifier schematic, intimate device-level 
heterogeneous integration had to be achieved for its 
realization. 
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Figure 8. Measured HBT thermal resistance across a wafer (4 
reticles) for three device types: RF0010 with DC thermal via, 
RF0023 with no thermal via, and RF0023 with AC thermal via. 

CONCLUSIONS 
 Novel InP Bi-CMOS technology with wafer-scale device-
level heterogeneous integration is demonstrated. Dense HI 
integration without device degradation enables robust ICs 
that maintain both CS performance and CMOS functionality. 
Differential amplifier ICs in this technology show record 
performance not possible with either technology alone. This 
integration approach is applicable to any generation CMOS 
and HBTs, as well as other CS devices. CS device 
integration with CMOS could accelerate its maturity and 
utilization.

In order to assess the yield and resistive loss of the HI via, 
a 1000 unit long chain of the nominal 1.0x1.0μm2

 HI vias at a 
pitch of 5μm were electrically tested. These vias connect the 
top CMOS copper metal to the HBT interconnect metal. 
Figure 9 shows the average HI via resistance is <200mΩ 
across the majority of the 3inch diameter wafer. Both stand 
alone via chain test structures (top) and via chains with 
HBTs 1μm away from the via (bottom) show very similar via 
resistance, demonstrating possibility for high integration 
density in this technology. 
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Figure 9. Wafer map showing the unit resistance in 
ohms of a 1000 unit long heterogeneous interconnect 
via chain with a 5μm pitch and 1.0x1.0μm2 via size. 
Top map is for stand alone vias and bottom map is 
for vias with HBTs placed in 1.0μm proximity. Fully 
processed wafer and a cross sectional SEM of the via 
chain are also shown. 
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Figure 10. HI differential amplifier slew rate (bottom) 
and DC gain x unity gain bandwidth (top) comparison 
before and after 100 of -55°C to +85°C temperature 
cycles, indicating that the HI ICs are robust. 
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Figure 11. Heterogeneously integrated differential amplifier 
circuit schematic (top), measured gain versus frequency 
(middle) and digital oscilloscope capture of the measured large 
signal output swing (bottom). Low frequency gains of 48 dB 
were achieved simultaneously with a unity gain bandwidth >65 
GHz. A 10-90% slew rate of 4.4x104 V/μs is observed with a 
6.9V differential output voltage swing and a 0.4V differential 
input voltage swing. 
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